Posts

Rare Earth Metals and Rare Earth Oxides

If you haven’t already, you should read this article on the rare earth elements. This article will discuss rare earth metals and rare earth oxides. Hopefully, you’ll find this information useful. The rare earth elements are essential for many applications, including computers, electronics, batteries, and more. Listed below are some common uses for these elements. […]

Posts

Vacuum smelting high-pressure gas atomization technology

The atomization method is a powder preparation method in which a fast-moving fluid (atomization medium) impacts or otherwise breaks the metal or alloy liquid into fine droplets, and then condenses into a solid powder. The atomized powder particles not only have the same uniform chemical composition as the established molten alloy, but also due to […]

Posts

Titanium but not just titanium

Titanium and its alloys have many advantages as surgical implant materials, such as lowdensity, high strength, good toughness, good biocompatibility, non-toxicity,low elastic modulus, good corrosion resistance, and low X-ray absorption rateEtc., thus occupying an increasingly important position in medical metalmaterials. Titanium and its alloys can be used for the repair and replacementof human hard tissues, […]

Posts

Overview of rare earth metals and intermediate alloys

The vast majority of single rare earth metals and their intermediate alloys are used to produce new rare earth metal materials such as neodymium iron boron, samarium cobalt permanent magnet and super magnetostriction and non-ferrous metal alloys such as AI-RE, Mg-RE, Cu-RE, Zn- RE, W-RE, Mo-RE, etc. In addition, there are a few rare earth […]

Posts

Process of high-density tungsten alloy

High-density tungsten alloy, also known as tungsten-based heavy alloy, is a type of alloy made of tungsten as the matrix element (85% ~ 99% mass fraction) with the addition of Ni, Cu, Fe and other alloy elements by liquid phase sintering. The density is up to 16.5 ~ 19.0g / cc. The most commonly used are […]

Posts

Alloying of molybdenum

The alloying principle of molybdenum is similar to that of tungsten. All the strengthening methods used to improve the heat resistance of tungsten are basically applicable to molybdenum. There are mainly the following types: solid solution strengthening, precipitation strengthening, dispersion strengthening and composite strengthening. Solution strengthening Solid solution strengthening includes the addition of trace elements […]

Posts

Strengthening of Tantalum

In refractory metals, the ductile-brittle transition temperature of tantalum is lower than -196℃, which has the best low-temperature plasticity. While maintaining this characteristic, it should be alloyed to increase its high-temperature strength. Tantalum alloys can be strengthened by solid solution strengthening, precipitation strengthening and a combination of both. The best solid solution strengthening elements are […]

Posts

Nitinol Applications

Although many nitinol applications are not well-known to the public, some applications are quite routine and familiar. The spectacle frame made of Nitinol severely deformed and then returned to normal. Similarly, a few years ago, when mobile phone antennas were made of Nitinol, they could bend without breaking or permanently bending. Another superelastic application of […]

Posts

The performance influencing factors of pyrolytic boron nitride

The production efficiency of boron nitride produced by chemical vapor deposition is high, but this method is easy to introduce pores and impurities into the sintered body and anisotropy caused by hot pressing. This makes its application very limited, especially in high temperature and oxidizing environments. Pyrolytic boron nitride materials have excellent physical and chemical […]

Posts